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sumption does not allow the covariance to vary spatially. For
this reason, the FFT EnKF was extended to wavelet EnKF
(Beezley et al., 2011). The use of wavelets results in an au-
tomatic localization, which varies in space adaptively. For
wavelets, the effect of the diagonal spectral model is equiva-
lent to a weighted spatial averaging of local covariance func-
tions (Pannekoucke et al., 2007). Diagonal matrices are in-
expensive to manipulate computationally, but implementing
the multivariate case and general observation functions is not
straightforward.
Spectral diagonal covariance models and their estimation

from an ensemble of realizations are not new. Diagonal spec-
tral modeling and, more generally, sparse spectral covariance
modeling, have been used for the background covariance in
data assimilation in meteorology for some time. The opti-
mal statistical interpolation system from Parrish and Derber
(1992) was based on a diagonal covariance model in spher-
ical harmonics, which were already used as horizontal ba-
sis functions in the numerical weather prediction code with
a change of state variables into physically balanced analy-
sis variables, and it has been used in operational weather
forecasting for a long time. Estimates of background co-
variance from an ensemble, called flow-dependent covari-
ance, in combinations with spectral covariance models have
been used in variational data assimilation (e.g., Buehner,
2005; Buehner and Charron, 2007; Berre et al., 2007; Varella
et al., 2011), leading to hybrid EnKF–3DVAR (3-D varia-
tional) methods. Another hybrid formulation in EnKF was
proposed in Hamill and Snyder (2000, Eq. 4), who pro-
posed a linear combination of sample covariance, different
in every analysis cycle, and background spectral diagonal
covariance from Parrish and Derber (1992), which does not
change over analysis cycles. The ECMWF 3DVAR system
(Courtier et al., 1998) also used diagonal covariance in spher-
ical harmonics for the background covariance. A diagonal
model in the Fourier space for homogeneous 2-D error fields,
with physically balanced cross-covariances, was proposed in
Berre (2000). The Fourier diagonalization approach was ex-
tended by Pannekoucke et al. (2007) to sparse representation
of the background covariance by thresholding wavelet coef-
ficients, and into a combined spatial and spectral localization
by Buehner and Charron (2007). The balanced update and
localization in the EnKF using the stream function-velocity
potential representation were studied in Kepert (2009).
Further developments in the history of background covari-

ance modeling in variational algorithms include construction
of non-separable formulation (Courtier et al., 1998; Fisher
and Andersson, 2001; Pannekoucke, 2009), representation of
balances between variables in order to obtain a more realistic
multivariate formulation (Derber and Bouttier, 1999; Fisher,
2003; Weaver et al., 2005), representation of heterogene-
ity using a physically/spectrally localized formulation (non-
separable wavelet formulation (Deckmyn and Berre, 2005;
Fisher and Andersson, 2001), separable formulation based
on diffusion operator (Weaver and Courtier, 2001) or recur-

sive filters (Purser et al., 2003), and a non-separable formu-
lation based on hybridization of diffusion and wavelets (Pan-
nekoucke, 2009). Formulations such as the diffusion operator
or the recursive filter are related to the diagonal assumption
here, they involve covariance models with a relatively small
number of parameters and thus free of sampling noise but es-
timated from an ensemble directly (Pannekoucke and Mas-
sart, 2008; Michel, 2013; Pannekoucke et al., 2014). Simi-
lar filtering strategies can be employed to improve the esti-
mation and the design of covariance formulations using re-
sults on the estimation of variances and length scales (Berre
et al., 2007; Raynaud et al., 2009; Raynaud and Pannek-
oucke, 2013; Ménétrier et al., 2015). The formulation of the
background error covariance model using the diagonal as-
sumption and a product of linear operator (such as the dis-
crete Fourier or wavelet transform here) is widely used in
variational literature to build covariance models in high di-
mension (e.g., Courtier et al., 1998; Fisher and Andersson,
2001; Weaver and Courtier, 2001).
The idea of using a covariance model to benefit sample

noise reduction is known; however, as far as we know no ref-
erence has been published to document the real advantage
of this method in improvements to the performance of the
EnKF. The paper provides a preliminary test, within an aca-
demic setting, of the techniques of employing parametric co-
variance in the EnKF, while the existing literature is focused
on the opposite direction, the use of ensembles to provide es-
timates for the variational framework, known as “hybrid for-
mulation”. Specifically, the use of spectral covariance mod-
eling in each EnKF analysis cycle to reduce the ensemble
size seems to be new. The main reason could be that it re-
quires building a covariance matrix parameterization, which
represents a real cost in terms of technology investment for
numerical weather prediction codes.
While modeling background covariances typically uses

multiple sources including historical data, the EnKF builds
the covariance in every analysis cycle from the ensemble it-
self. In this paper, we prove that replacing the sample co-
variance by its spectral diagonal improves the approximation
when the covariance itself is diagonal in the spectral space,
as is the case, e.g., when the state is a second-order stationary
random field and a Fourier basis is used. The result, however,
is general and it applies to an arbitrary orthogonal basis, in-
cluding wavelets. We also develop computationally efficient
spectral EnKF algorithms, which take advantage of the diag-
onal form of the covariance, in the multivariate case and for
several important classes of observations. We demonstrate
the methods on computational examples with the Lorenz 96
system and shallow water equations, which show that good
performance can be achieved with very small ensembles.
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2 Notation

Vectors in Rn or Cn are typeset as u and understood to be
columns. Random vectors are typeset as X. The entry i of
X is denoted by (X)i or xi . Matrices (random or determin-
istic) are typeset as A, and A∗ is the transpose or conjugate
transpose in the complex case. The entry i, j of matrix A is
denoted by (A)i,j or ai,j , and A= [a1, . . . , an] is the writing
of a matrix as a collection of columns. Nonlinear operators
are typeset asM. The mean value is denoted by E[·], and
Var is the variance. N (0, 1) is the normal (Gaussian) distri-
bution with zero mean and unit variance, and N(m, C) is the
multivariate normal distribution with meanm and covariance
C. The Euclidean norm of a vector is |u| = (

n∑
i=1
|ui |

2)1/2. The

Frobenius norm of a matrix, also known as Hilbert–Schmidt

norm, is |A|F= (
m∑
i=1

n∑
j=1
|ai,j |

2)1/2.

3 Kalman filter and ensemble Kalman filter

The state of the system at time t is described by a random
vector Xt of length n. The system evolution between two
times t1 and t2 is given by a functionM(·, t1, t2), so that

Xf
t2
=M

(
Xa
t1
, t1, t2

)
. (1)

The goal of the KF (Kalman, 1960) is to correct the forecast
state of the system Xf

t to obtain the analysis estimate Xa
t of

the true state Xt , given noisy observations Y t =Ht Xt + εt ,
where Ht is an observation operator, i.e., a mapping from
state space to a data space, and εt ∼N(0, Rt ). When the dis-
tributions of the state Xt and the data error are Gaussian, the
analysis satisfies

Xa
t =X

f
t −Kt

(
HtXf

t −Y t

)
,

Kt = CtH∗t
(
HtCtH∗t +Rt

)−1
, (2)

whereCt is the covariance of the forecastXf
t , andKt is called

the Kalman gain. In the KF, the state is represented by its
mean and covariance, and the mean is transformed also by
Eqs. (1) and (2). In the rest of the paper, we will drop the
time index t and the superscript f, unless there is a danger of
confusion.
In the EnKF, the analysis formulas (Eqs. 1, 2) are applied

to each ensemble member, with the covariance replaced by
the sample covariance from the ensemble. The resulting en-
semble, however, would underestimate the analysis covari-
ance, which is corrected by a data perturbation by sampling
from the data error distribution (Burgers et al., 1998). De-
note by X1, . . . , XN the forecast ensemble, created either
by a perturbation of a background state or by evolving each
analysis ensemble member from the previous time step inde-
pendently by Eq. (1). Then, the analysis ensemble members
are

Xa,j
=Xj −CNH∗

(
HCNH∗+R

)−1(
HXj −Y j

)
, (3)

where the sample covariance matrix is

CN =
1

N − 1

N∑
j=1

(
Xj −X

)(
Xj −X

)∗
,

X =
1
N

N∑
j=1

Xj , (4)

and Y j =Y + τ j are the perturbed observations, with
τ j ∼N(0, R) independent.
The advantage of the EnKF update (Eqs. 3, 4) is that it

can be implemented efficiently without forming the sample
covariance matrix CN explicitly (e.g., Mandel et al., 2009,
Eq. 15). On the other hand, the rank of the matrix CN is at
most N − 1, while the number of significant modes can be
higher. In the usual case, whenN is small, the low rank of the
approximation CN of the true forecast covariance C causes
spurious long-range correlations, which are the biggest draw-
back of the EnKF.

4 Spectral diagonal EnKF

Let F be an orthonormal transformation matrix, which trans-
forms each ensemble member to spectral space, and de-
note each transformed ensemble member by the additional
subscript F, XjF=FX

j , j = 1, . . . , N . Since the transfor-
mation is orthonormal, the inverse transformation is F∗, so
F∗XjF=X

j for each j = 1, . . . , N . The columns of the in-
verse transform matrix F∗ are the spectral basis elements
u1, . . . , un, i.e., F= [u1, . . . , un]∗. We will also denote the
sample covariance of the transformed ensemble with the ad-
ditional subscript F,

CNF =
1

N − 1

N∑
j=1

(
X
j
F−XF

)(
X
j
F−XF

)∗
= FCNF∗,

XF =
1
N

N∑
j=1

X
j
F. (5)

The idea of the spectral diagonal Kalman filter is to replace
the sample covariance in the analysis formula (Eq. 3) by only
the diagonal elements of sample covariance in spectral space:

DNF = CNF ◦ I=


c1,1 0 · · · 0

0 c2,2
...

...
. . . 0

0 · · · 0 cn,n

 ,

ci,i =
1

N − 1

N∑
j=1

∣∣∣(XjF)
i
−
(
XF
)
i

∣∣∣2, (6)

where ◦ stands for the Schur product, i.e., element-wise mul-
tiplication. The entries ci,i are the sample variances, com-
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puted without forming the whole matrix CNF . The diagonal
model is transformed back to physical space as

DN = F∗DNF F, (7)

and the proposed analysis update is then

Xa,j
=Xj −DNH

(
HDNH∗+R

)−1(
HXj −Y j

)
. (8)

5 Error analysis

We will now compare the expected errors of the sample co-
variance and its spectral diagonal model (Eq. 7). The analysis
extends results for a sample covariance formula with known
zero mean (Furrer and Bengtsson, 2007; Mallat, 1998) by
taking into account the sample mean in Eq. (4). This exten-
sion is important because the mean of the ensemble mem-
bers is not known in practice and an estimate must be used
instead.
Assume that the ensemble members Xi ∼N(µ, C) are

i.i.d. (independent and identically distributed). (In the EnKF,
the ensemble members after the first analysis cycle are not
independent, because the sample covariance in the analysis
step ties them together, but they converge to independent ran-
dom vectors as the ensemble size N→∞ (Le Gland et al.,
2011; Mandel et al., 2011).)
Using Lemma 1 from the Appendix and the fact that the

Frobenius norm is invariant to orthogonal transformations,
we have in any case,

E
[
|C−CN |2F

]
= E

[∣∣∣CF−CNF
∣∣∣2
F

]
=

1
N − 1

n∑
i,j=1

(∣∣(CF)i,j
∣∣2+ (CF)i,i(CF)j,j

)
=

2
N − 1

n∑
i,j=1

∣∣(CF)i,j
∣∣2

+
1

N − 1

n∑
i,j=1
i 6=j

(CF)i,i(CF)j,j . (9)

The purpose of the spectral transformation is to bring the
covariance to a diagonal form CF=FCF∗, where F is or-
thogonal transformation. Specifically, the rows of the spec-
tral transformation matrix F∗ are orthonormal eigenvectors
of the covariance C. This is the situation, e.g., when the en-
semble members Xi are sampled from a second-order sta-
tionary random field on a rectangular mesh and the Fourier
basis is used. Then, using (CF)i,j = 0 for i 6= j , we get that
the expected error of the spectral diagonal model consists of
the diagonal terms in the frequency domain only:

E
[
|C−DN |2F

]
= E

[∣∣∣CF−CNF ◦ I
∣∣∣2
F

]
=

1
N − 1

n∑
i=1

(∣∣(CF)i,i
∣∣2+ (CF)i,i(CF)i,i

)
=

2
N − 1

n∑
i=1

∣∣(CF)i,i
∣∣2. (10)

Consequently,

E
[
|C−DN |2F

]
≤ E

[
|C−CN |2F

]
(11)

with equality only if (CF)i,i (CF)j,j = 0, for all i 6= j , i.e.,
only in the degenerate case when the covariance CF and thus
C have a rank of at most one.
To assess the improvement gained by the spectral diag-

onal model in Eq. (11), denote the eigenvalues of C by
λi = (CF)i,i , and without loss of generality assume that
0≤ λ1≤ λ2≤ ·· · ≤ λn. The error estimates (Eqs. 9, 10) can
be now written as

E
[
|C−CN |2F

]
=

2
N − 1

n∑
i=1

λ2i +
1

N − 1

n∑
i,j=1
i 6=j

λiλj , (12)

and

E
[
|C−DN |2F

]
=

2
N − 1

n∑
i=1

λ2i . (13)

Note that(
n∑
i=1

λi

)2
=

n∑
i,j=1

λiλj =

n∑
i,j=1,i 6=j

λiλj

+

n∑
i=1

λ2i ≥
n∑
i=1

λ2i , (14)

which shows that the error of the sample covariance depends
on the `1 norm of the eigenvalues sequence,

E
[
|C−CN |2F

]
=

1
N − 1

 n∑
k=1

λ2k +

(
n∑
k=1

λk

)2
=

1
N − 1

(∣∣{λk}nk=1∣∣2`2 + ∣∣{λk}nk=1∣∣2`1) ,
while the error of the spectral diagonal model depends only
on the `2 norm,

E
[
|C−DN |2F

]
=

2
N − 1

∣∣{λk}nk=1∣∣2`2 ,
which is weaker than the `1 norm as the state space dimen-
sion n→∞. The improvement depends on the rate of de-
cay of the eigenvalues as the index k→∞. Note that the
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eigenvalues of the covariance (if it exists) of a random ele-
ment in an infinitely dimensional Hilbert space must satisfy
the trace condition

∑
∞

k=1 λk <∞ (e.g., Da Prato, 2006). The
eigenvalues of the covariance in many physical systems obey
a power law, λk ≈ k−α with α > 1 (e.g., Gaspari and Cohn,
1999). Suppose that λk = c k−α and n→∞. Then,

∣∣{λk}nk=1∣∣2`2→ ∞∑
k=1

k−2α ≈

∞∫
1

x−2αdx =
1

2α− 1
,

∣∣{λk}nk=1∣∣2`1→ ∞∑
k=1

k−α ≈

∞∫
1

x−αdx =
1

α− 1
,

which gives the error ratio E[|C−DN |2F]/E[|C−C
N
|
2
F]

→ 0 as α→ 1+, i.e., when the eigenvalues decay slowly.
Other considerations of similar ratios can be found in Fur-
rer and Bengtsson (2007).
Several concluding remarks are in order. Furrer and

Bengtsson (2007) consider tapering to the diagonal in the
physical space, but diagonal covariance in the physical space
is never used in applications. The present method is EnKF
with diagonal model in a spectral domain, where it is rea-
sonable to expect that the covariance will be approximately
diagonal.
While the spectral diagonal formulation improves the ap-

proximation for small ensembles, the spectral diagonal does
not converge to the covariance as N→∞, unless the covari-
ance is diagonal in the spectral basis.
Equations (9) and (10), respectively Eqs. (12) and (13),

can be written in the form

E
[
|C−CN |2F

]
=

1
N − 1

Tr
(
C2
)
+

1
N − 1

(Tr(C))2, (15)

E
[
|C−DN |2F

]
=

2
N − 1

Tr
(
C2
)
, (16)

using the fact that the trace of a matrix is invariant to simi-
larity transformation. The comparison (Eq. 11) also follows
from Eqs. (15) and (16) by noting that Tr(C2)≤ (Tr(C))2 for
all positive semidefinite C, which can be seen, e.g., from
Eq. (14).

6 Spectral EnKF algorithms

We will show that the analysis step can be implemented very
efficiently in cases of practical interest. We drop the ensem-
ble members index in all analysis formulas to make them
more readable. Note that when using all the following for-
mulas, it is necessary to perturb the observations.

6.1 State consisting of only one gridded variable,
completely observed

Assume that the state consists of one gridded variable,
e.g.,X ∈Rn, and that we can observe the whole system state,

i.e., the observation function is the identity,H= I, and obser-
vations are Y ∈Rn. Assume also that the observation noise
covariance matrix is c I, where c > 0 is a constant. In this spe-
cial case we can do the whole update in the spectral space,
since it is possible to transform the innovation to the spectral
space, and the analysis step (Eq. 8) becomes

Xa
=X−F∗DNF

(
DNF + cI

)−1
F(X−Y ) .

Note that the matrices DNF and DNF + cI are diagonal, so
any operation with them, such as inversion or multiplica-
tion, is very cheap. The matrix F is never formed explicitly.
Rather, the multiplications of F and F∗ times a vector are im-
plemented by the FFT or discrete wavelet transform (DWT).
This is the base case of both the FFT EnKF (Mandel et al.,
2010a, b) and the wavelet EnKF (Beezley et al., 2011).

6.2 Multiple variables on the same grid, one variable
completely observed

In a typical model, such as numerical weather prediction, the
state consists usually of more than one variable. Assume the
state consists of m different variables all based on the same
grid of length n. Then, each variable can be transformed to
the spectral space independently, and we have the state vector
X ∈Rn·m and the transformation matrix in the block form

X =


X1
X2
...

Xm

 , F=


F̃ 0 · · · 0

0 F̃
...

...
. . . 0

0 · · · 0 F̃

 , (17)

where each block X1 is a vector of length n and F̃ is an n by
n transformation matrix.
Assume also that the whole state of the first variable X1

is observed and, again, that the covariance of observation er-
ror is c I. In this case, the observation operator is the one by
m block matrix of the form H= [I 0 · · · 0]. In the proposed
method, we approximate the cross-covariances between the
variables also by the diagonal of the sample covariance in
spectral space, DNF = [D

N
i,j ]

m
i,j=1, where Di,j is the matrix

containing only diagonal elements from the sample covari-
ance matrix between transformed variables F̃Xi and F̃Xj .
With this notation, the analysis step (Eq. 8) becomes

Xa
=

 Xa
1
...

Xa
m

=
 X1

...

Xm

−
 F̃∗DN1,1

...

F̃∗DNm,1


(
DN1,1+ cI

)−1
F̃(X1−Y ) . (18)

Note that again the matrix to be inverted is diagonal and full
rank, and the transformation F̃ is implemented by a call to
FFT or DWT, so the operations are computationally very ef-
ficient. A related method using interpolation and projection
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was proposed for the case when the model variables are de-
fined on non-matching grids (Beezley et al., 2011).

6.3 Multiple variables on the same grid, one variable
observed at a small number of points

This situation occurs, e.g., when assimilated observations are
from discrete stations. In this case, the observation matrix is
H= [H1 0 · · · 0], where H1 has a small number of rows, one
for each data point, and X and F are the same as in Eq. (17).
We substitute the diagonal spectral approximation into the
analysis step (Eq. 8) directly,

Xa
=

 X1
...

Xm

−
 F̃∗DN1,1

...

F̃∗DNm,1

 F̃(H1F̃∗DN1,1F̃H
∗

1+R
)−1

(H1X1−Y ) . (19)

The solution of a system of linear equations with the ma-
trix H1 F̃∗DN1,1 F̃H

∗

1+R in Eq. (19) does not present a prob-
lem, because its dimension is small by assumption, and F̃H∗1
is easy to compute explicitly by the action of FFT on the
columns of H∗1. Note that in this case, the data noise covari-
ance R may be arbitrary.

6.4 State consisting of more variables, one partly
observed

Consider the situation when the number of observation points
is too large for the method of Sect. 6.3 to be feasible but only
one variable on a part of the mesh is observed. The typical
example of this type may be radar images, which cover typ-
ically only a part of the domain of the numerical weather
prediction model.
The method will go through for any observed subset of en-

tries of the gridded variableX1 but the performance will vary.
The performance tends to be better when the observed and
unobserved entries of X1 fill two subdomains of the physi-
cal domain with a relatively small boundary between them.
A detailed investigation, however, is planned for elsewhere.
Suppose that observations (Y )j of the values of the first

variable (X1)j are available only for a subset of indices
j ∈M ⊂{1, . . . , n}. Augment the forecast state by an ad-
ditional variable X0. For j = 1, . . . , n, set (X0)j = (X1)j
if j ∈M , (X0)j = (Y )j = 0 if j 6∈M . We can now use the
analysis update (Eq. 18) with the augmented state X̃= (X0,
X1, . . . , Xm) and observation Ỹ = (Y , 0, . . . , 0), to get the
augmented analysis X̃a

= (Xa
0, X

a
1, . . . , X

a
m) and drop Xa

0.
Note that the innovations to the original variables are prop-

agated through the spectral diagonal approximation of cross-
covariance between the original and augmented variables.
Since this covariance is not spatially homogeneous, a Fourier
basis will not be appropriate, and computational experiments
in Sect. 7 confirm that wavelets indeed perform better.

7 Computational experiments

In all experiments, we use the usual twin experiment ap-
proach. A run of the model from one set of initial condi-
tions is used to generate a sequence of states, which plays
the role of the truth. Data values were obtained by applying
the observation operator to the truth; the data perturbation
was done only for ensemble members within the assimila-
tion algorithm. A second set of initial conditions is used for
data assimilation and for a free run, with no data assimila-
tion, for comparison. The error of the free run should be an
upper bound on the error of a reasonable data assimilation
method.
We evaluate the filter by the root mean square error

(RMSE),

RMSE=

(
1
n

n∑
i=1

∣∣(X)i − (X)i∣∣2)1/2,
where X is the ensemble mean, forecast or analysis, X is the
true state, and n is the number of the grid points xi . In the
case when the state consists of more than one variable, such
as in the shallow water equations, we evaluate the error of
each variable independently.
When the true state and the model in the KF evolve follow-

ing the same mapping (Eq. 1) and the mapping is linear, then
the estimate provided by the KF is unbiased and it minimizes
the RMSE over all possible gain matrices Kt in Eq. (2). This
statistical optimality of the RMSE motivates its use to evalu-
ate how well the data assimilation fulfills its overall purpose
to track the truth in the general case when the model is non-
linear and the KF is replaced by the EnKF, with the covari-
ance replaced by an approximation from an ensemble.
We evaluate the RMSE of the standard EnKF, marked

as EnKF in the legend of the figures, and the spectral di-
agonal EnKF with the discrete sine transform, discrete co-
sine transform, and the Coiflet 2,4 discrete wavelet transform
(Daubechies, 1992), marked as DST, DCT, and DWT, respec-
tively.

7.1 Lorenz 96

In the Lorenz 96 model (Lorenz, 2006), the state consists of
one variable Xt ∈RK , Xt = (x1, . . . , xK ), governed by the
differential equations
dxj
dt
= xj−1xj+1− xj−1xj−2− xj +F, j = 1, . . ., K,

where the values of xj−K and xj+K are defined to be equal
to xj for each j = 1, . . . , K , and F is a parameter.
Our experiments’ setup follows the one used in Lorenz and

Emanuel (1998). We set the parameter F = 8, which causes
the model to be strongly chaotic. The time step of the model
was set to 0.01 time units with assimilation every 0.05 time
units, which is equivalent to assimilation into a climatologi-
cal model every 6 h. The data covariance was diagonal, and
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the standard deviation of observation error was set to F/40.
The ensemble and the initial conditions for the truth were
generated by sampling from N(F/4, F 2/4), and spinup for
18 time units (equivalent to 90 days) was performed. Addi-
tionally, while the true state was advanced using the true val-
ues of F = 8, the ensemble members were advanced using
the value 0.95F in the Lorenz model.
The only difference from the experiment in Lorenz and

Emanuel (1998) was the dimension of the model, where we
used 256 instead of 40. We chose 256 because the dyadic
length of the state vector is required when using wavelet
transformation, because we wanted to test the proposed aug-
mented algorithm with a significant number of observations
and because we wanted to have a significant difference be-
tween ensemble size and state dimension. To test the chaotic
properties of this model we performed two independent sim-
ulations with very close initial conditions and measured the
difference in each time step between the states using maxi-
mum norm. Initial values for the first simulation were gener-
ated as i.i.d. random variables from N(F/4, F 2/4), and the
initial values for the second simulation were created by per-
turbing the first set of initial values with white noise with
variance of 0.0001. We performed this experiment for both
state dimensions, 40 and 256. The results (Fig. 1a) show that
the change of the state dimension does not affect the rate of
divergence of two initially close solutions. Figure 1b and c
show one solution of the Lorenz 96 model with state dimen-
sions 40 and 256, respectively, after 50 time units for illus-
tration of the chaotic character of the state.
In the case when the whole state is observed, spectral fil-

ters with ensemble size N = 4 (Fig. 2a) already decrease the
error significantly compared to a run with no assimilation,
while the standard EnKF actually increases the error. For
all filters, the error eventually decreases with the ensemble
size at the standard rate N−1/2; however, the spectral EnKF
shows the error decrease from the start, while the EnKF lags
until the ensemble size is comparable to the state dimension
and even then its RMSE is significantly higher (Fig. 2b).
Next, consider the case when only the first m points

of a grid are observed. In the legend, DCT-S and DWT-S
are the methods with the discrete cosine transform and the
Coiflet 2,4 discrete wavelet transform, respectively, with the
standard analysis update (Eq. 8), while DCT-A and DWT-
A use the augmented state methods from Sect. 6.4. Fig-
ure 3 shows that the spectral diagonal method decreases the
RMSE, while the standard EnKF is unstable. This observa-
tion is consistent with the result of Kelly et al. (2014), which
shows that, for a class of dynamical systems, the EnKF re-
mains within a bounded distance of truth if sufficiently large
covariance inflation is used and if the whole state is observed.
The augmented state method DWT-A with wavelet transfor-
mation gave almost the same analysis error as DCT-S, which
is using the spectral diagonal filter with the exact observation
matrix, while the cosine basis, which implies a homogeneous
random field, resulted in a much larger error (method DCT-

A). A similar behavior was seen with a smaller number of
observed points as well, but the error reduction in the spec-
tral diagonal EnKF was smaller (not shown).

7.2 Shallow water equations

The shallow water equations can serve as a simplified model
of atmospheric flow. The state Y = (h, u, v) consists of water
level height h and velocities u and v in the x and y direc-
tions, governed by the differential equations of conservation
of mass and momentum:

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0,

∂(hu)

∂t
+
∂

∂x

(
hu2+

1
2
gh2

)
+
∂(huv)

∂y
= 0,

∂(hv)

∂t
+
∂(huv)

∂x
+
∂

∂y

(
hv2+

1
2
gh2

)
= 0,

where g is gravity acceleration, with reflective boundary con-
ditions and without Coriolis force or viscosity. The equations
were discretized on a rectangular grid size of 64× 64 with a
horizontal distance between grid points of 150 km and ad-
vanced by the Lax–Wendroff method with the time step 1 s.
The initial values were water level h= 10 km, plus Gaussian
drop with height of 1 km, width of 32 nodes, in the center of
the domain, and u= v= 0. See Moler (2011, Chapter 18) for
details.
We have used two independent initial conditions, one used

for the truth and another for the ensemble and the free run.
The only difference was the location of the initial wave. Both
states were moved forward for 3 h. Then the ensemble was
created by adding random noise (with prescribed background
covariance). Then, all states were moved forward for another
3 h and assimilation starts 6 h after the model initialization.
All assimilation methods start with the same forecast in the
first assimilation cycle. The 2-D tensor products FFT and
DWT were used in the diagonal spectral EnKF. The obser-
vation error was assumed to have zero mean and variance of
1000m2 in h and 1000 kgm s−1 in u and v.
The background covariance for initial ensemble perturba-

tion was estimated using samples taken every minute, from
time tstart= 3 h to time tend= 6 h, and modified by tapering
the sample covariance matrix CN as B=CN ◦ T, where the
tapering matrix T had the block structure

T=

 A 0 0
0 A 0
0 0 A

+ 0.9
 0 A A

A 0 A
A A 0

 ,
where the entry between nodes (ia , ja) and (ib, jb) is
(A)a,b= exp(−|ia − ib|) exp (−|ja − jb|). Note that matrix
T could be also rewritten using the Kronecker product as
T=K⊗ (M⊗M), whereK is a 3× 3 square matrix with el-
ements (K)i,i = 1, (K)i,j = 0.9 if i 6= j and M is a 64× 64
square matrix with elements (M)i,j = exp (|i− j |). Since
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Figure 3.Mean RMSE from 10 realizations for the Lorenz 96 problem, ensemble size 16, state dimension 256. (a) First 128 points observed
and (b) first 64 points observed.
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Figure 4. RMSE of ensemble mean of one realization of three assimilation cycles. Full state was observed. The length of assimilation cycle
is 60min, ensemble size 20. (a)Water height, (b) velocity in the x direction and (c) velocity in the y direction.

shallow water equations have shown that the analysis error
drops very fast for small ensembles, and the method is stable
over multiple analysis cycles. The paper provides a technique
for data assimilation which can work with minimal compu-
tational resources because an implementation needs only an
orthogonal transformation, such as the fast Fourier or discrete
wavelet transform, and manipulation of vectors and diagonal
matrices. Therefore, it should be of interest in applications.
The present method uses orthogonal transformation, but

orthogonality is not a necessary condition for a diagonal as-
sumption in general; diagonal approximation with frames
was proposed in Pannekoucke et al. (2007). The question of
further reducing the number of parameters and thus sampling

noise as in, e.g., functions of the Laplace operator, is also of
interest. When a different spectral diagonalization is used for
each horizontal plane, the question is how to connect hori-
zontal sheets along the vertical dimension. In Pannekoucke
(2008, their Appendix D), wavelet packets are used to take
advantage of the orthogonal basis dictionary they provide.
These issues will be studied elsewhere.
The method described in Sect. 6.2 is general and it al-

lows for arbitrary linear observation operators, but an inverse
(i.e., solving a system) in the observation space is required.
The computational cost then grows as the cube of data di-
mension. This issue is well known in spectral variational
methods; techniques used in the literature include aggregat-
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Figure 5.Mean RMSE of ensemble mean from five independent repetitions. Ensemble size 20, only water height observed. (a)Water height,
(b) velocity in the x direction and (c) velocity in the y direction.

ing and interpolating observations to create “super observa-
tions” as gridded arrays (Parrish and Derber, 1992).
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Appendix A: Error estimate of sample covariance
matrix

We prove an extension of Mallat (1998, Prop. 10.14) to sam-
ple covariance of a random vector with unknown mean.

A1 Lemma 1

Let U k ∼N(µ, C), k= 1, . . . , N , be i.i.d. vectors in Rn or
Cn, and

(
CN

)
i,j
=

1
N − 1

(
N∑
k=1

((
U k
)
i
−

1
N

N∑
l=1

(
U k
)
i

)
((
U k
)
j
−

1
N

N∑
l=1

(
U l
)
j

)∗)
(A1)

their sample covariance. Then,

E

[∣∣∣∣(CN)i,j − (C)i,j
∣∣∣∣2
]
=

1
N − 1

(∣∣(C)i,j ∣∣2+ (C)i,i(C)j,j) .
A2 Proof

The proof follows that of Mallat (1998, Prop. 10.14) with
adjustments for the presence of the sample mean in Eq. (A1).
Each element of the sample covariance cNi,j =

(
CN

)
i,j

is an
unbiased estimate of the covariance ci,j = (C)i,j , so

E

[∣∣∣cNi,j − ci,j ∣∣∣2]= E[∣∣∣cNi,j ∣∣∣2]− ∣∣ci,j ∣∣2.
Without loss of generality, assume µ= 0, subtracting the
constant µ if necessary, and compute

E

[∣∣∣cNi,j ∣∣∣2]= E [

. . .

N∑
m=1

(
umj

)∗2 1
(N − 1)2

E

∣∣∣∣∣ N∑
k=1

uki

(
ukj

)∗∣∣∣∣∣
2


−
1

N(N − 1)2
E

[
N∑

k,l,m=1
uki

(
ukj

)∗(
uli

)∗
umj

]

−
1

N(N − 1)2
E

[
N∑

k,l,m=1

(
uki

)∗
ukju

l
i

(
umj

)∗]

+
1

N2(N − 1)2
E

∣∣∣∣∣ N∑
l,m=1

uli

(
umj

)∗∣∣∣∣∣
2
 . (A2)

Now we utilize the Isserlis theorem, also known as Wick’s
formula, which states that if A1, A2, A3, and A4 have a joint-
centered Gaussian distribution, then

E [A1A2A3A4]= E [A1A2]E [A3A4]+E [A1A3]E [A2A4]
+E [A1A4]E [A2A3] ;

cf. Isserlis (1918). Since our samples are independent and
E[uki ] = 0, we know that

E
[
uki

(
ukj

)∗]
= cij , E

[
uki u

l
j

]
= 0 if k 6= l,

and we get

E
[
uki

(
ulj

)∗(
umi

)∗
unj

]
=
∣∣ci,j ∣∣21{k=l,m=n}+ ci,icj,j1{k=m,l=n}
+E

[
uiuj

]
E
[(
uj
)∗
(ui)
∗
]
1{k=n,l=m}.

Applying this equation in Eq. (A2), we get

E

[∣∣∣cNi,j ∣∣∣2]= 1
N − 1

(
ci,icj,j +N

∣∣ci,j ∣∣2) ,
and the final result follows

E

[∣∣∣cNi,j − ci,j ∣∣∣2]= 1
N − 1

(
ci,icj,j +N

∣∣ci,j ∣∣2)− ∣∣ci,j ∣∣2
=

1
N − 1

(
ci,icj,j +

∣∣ci,j ∣∣2) .
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